Product Description
| Series | Typical model | Displ. | Cooling Capaciry | COP | Capacitor | Compressor Hight | Test Mode | |
| cc | W | Btu/h | w/w | uF/V | mm | |||
| TH | TH420RC | 42.0 | 7250 | 24737 | 3.30 | — | 339.7 | ASHRAE/T |
| TH428RC | 42.8 | 7340 | 25044 | 3.25 | — | 339.7 | ASHRAE/T | |
| TH446RC | 44.6 | 7500 | 25590 | 3.25 | — | 347.7 | ASHRAE/T | |
| THK40P***U | 47.2 | 7850 | 26784 | 3.12 | — | 361.3 | ASHRAE/T | |
| THU40W***U | 48.8 | 8197 | 27978 | 3.18 | — | 361.3 | ASHRAE/T | |
| TE | TE680RC | 68.0 | 12830 | 43776 | 3.35 | — | 410.5 | ASHRAE/T |
| TE708RC | 70.8 | 13250 | 45209 | 3.35 | — | 410.5 | ASHRAE/T | |
| TE800RC | 80.0 | 15050 | 51351 | 3.30 | — | 441.1 | ASHRAE/T | |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Standard |
|---|---|
| Warranty: | 1 Year |
| Usage: | for Air Conditioner |
| Samples: |
US$ 200/Piece
1 Piece(Min.Order) | Order Sample |
|---|
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What are the differences between stationary and portable air compressors?
Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:
1. Mobility:
The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.
2. Power Source:
Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.
3. Tank Capacity:
Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.
4. Performance and Output:
The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.
5. Noise Level:
Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.
6. Price and Cost:
Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.
When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.
.webp)
Can air compressors be integrated into automated systems?
Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:
Pneumatic Automation:
Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.
Control and Regulation:
In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.
Sequential Operations:
Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.
Energy Efficiency:
Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.
Monitoring and Diagnostics:
Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.
When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.
In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.
.webp)
What is the role of air compressor tanks?
Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:
1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.
2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.
3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.
4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.
5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.
6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.
Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.


editor by CX 2024-02-24
China Standard CHINAMFG Compact Structure Intelligent PLC Control Good Price Electric Motor Powered Direct Drive Screw Air Compressor small air compressor
Product Description
Product Description
Product Features
1. Using ATLAS-COPCO air-end, super high efficiency
2. CHINAMFG designed gear box, reliable & durable
3. IP54 motor, excellent bearing with phrase sequence protection
4. Newly designed intake valve
5. Stable electronic control system
6. Intelligent PLC controller
7. Low noise and low vibration
8. Prefiltration protection, extend the spare parts lifetime
9. High precision filter element
| Model | Max Working Pressure | F.A.D | Motor Power | Connection | Net Weight | Dimension(L*W*H) | ||
| – | Bar | Psig | m³/min | Hp | Kw | – | Kgs | Mm |
| LS4N-8 | 8 | 116 | 0.58 | 6 | 4 | G1/2” | 152 | 650*650*890 |
| LS4N-10 | 10 | 145 | 0.51 | |||||
| LS5.5N-8 | 8 | 116 | 0.82 | 7.5 | 5.5 | G1/2” | 166 | 650*650*890 |
| LS5.5N-10 | 10 | 145 | 0.68 | |||||
| LS7.5N-8 | 8 | 116 | 1.13 | 10 | 7.5 | G1/2” | 175 | 650*650*890 |
| LS7.5N-10 | 10 | 145 | 0.90 | |||||
| LS11-7 | 7 | 102 | 1.79 | 15 | 11 | G3/4” | 293 | 850*790*1260 |
| LS11-8 | 8 | 116 | 1.78 | |||||
| LS11-10 | 10 | 145 | 1.36 | |||||
| LS11-13 | 13 | 188 | 1.19 | |||||
| LS15-7 | 7 | 102 | 2.30 | 20 | 15 | G3/4” | 341 | 850*790*1260 |
| LS15-8 | 8 | 116 | 2.20 | |||||
| LS15-10 | 10 | 145 | 2.00 | |||||
| LS15-13 | 13 | 188 | 1.54 | |||||
| LS18.5-7 | 7 | 102 | 3.00 | 25 | 18.5 | G1” | 364 | 850*790*1260 |
| LS18.5-8 | 8 | 116 | 3.00 | |||||
| LS18.5-10 | 10 | 145 | 2.60 | |||||
| LS18.5-13 | 13 | 188 | 2.10 | |||||
| LS22D-7 | 7 | 102 | 3.70 | 30 | 22 | G1” | 436 | 1150*850*1000 |
| LS22D-8 | 8 | 116 | 3.50 | |||||
| LS22D-10 | 10 | 145 | 3.00 | |||||
| LS22-13 | 13 | 188 | 2.35 | |||||
| LS30-7 | 7 | 102 | 5.36 | 40 | 30 | G1-1/2” | 559 | 1430*950*1200 |
| LS30-8 | 8 | 116 | 5.00 | |||||
| LS30-10 | 10 | 145 | 4.45 | |||||
| LS37-7 | 7 | 102 | 6.20 | 50 | 37 | G1-1/2” | 614 | 1430*950*1200 |
| LS37-8 | 8 | 116 | 6.10 | |||||
| LS37-10 | 10 | 145 | 5.10 | |||||
| LS45D-7 | 7 | 102 | 8.40 | 60 | 45 | G1-1/2” | 870 | 1720*980*1600 |
| LS45D-8 | 8 | 116 | 8.00 | |||||
| LS45D-10 | 10 | 145 | 7.40 | |||||
| LS45D-13 | 13 | 188 | 6.40 | |||||
| LS55D -7 | 7 | 102 | 10.50 | 75 | 55 | G2” | 1220 | 1950*1060*1600 |
| LS55D -8 | 8 | 116 | 10.00 | |||||
| LS55D -9 | 10 | 145 | 9.10 | |||||
| LS55D -13 | 13 | 188 | 7.80 | |||||
| LS75D-7 | 7 | 102 | 13.60 | 100 | 75 | G2” | 1285 | 1950*1060*1600 |
| LS75D-8 | 8 | 116 | 13.00 | |||||
| LS75D-10 | 10 | 145 | 11.80 | |||||
| LS75D-13 | 13 | 188 | 10.30 | |||||
| LS90D-7 | 7 | 102 | 17.10 | 120 | 90 | G2” | 1570 | 2260*1060*1600 |
| LS90D-8 | 8 | 116 | 17.00 | |||||
| LS90D-10 | 10 | 145 | 15.20 | |||||
| LS90D-13 | 13 | 188 | 12.50 | |||||
| LS110D-7 | 7 | 102 | 21.20 | 150 | 110 | G2″ | 1870 | 2260*1230*1600 |
| LS110D-8 | 8 | 116 | 20.00 | |||||
| LS110D-10 | 10 | 145 | 17.10 | |||||
| LS110D-13 | 13 | 188 | 14.30 | |||||
| LS132D-7 | 7 | 102 | 25.00 | 180 | 132 | G2″ | 1920 | 2260*1230*1600 |
| LS132D-8 | 8 | 116 | 24.30 | |||||
| LS132D-10 | 10 | 145 | 21.00 | |||||
| LS132D-13 | 13 | 188 | 17.00 | |||||
| LS160+-7 | 7 | 102 | 30.50 | 210 | 160 | DN80 | 2970 | 2880*1754*1930 |
| LS160+-8 | 8 | 116 | 29.20 | |||||
| LS160+-10 | 10 | 145 | 26.90 | |||||
| LS180+-7 | 7 | 102 | 32.90 | 240 | 180 | DN80 | 3150 | 2880*1754*1930 |
| LS180+-8 | 8 | 116 | 31.20 | |||||
| LS180+-10 | 10 | 145 | 29.10 | |||||
| LS200+-7 | 7 | 102 | 36.80 | 270 | 200 | DN100 | 3450 | 3502*1754*1983 |
| LS200+-8 | 8 | 116 | 34.40 | |||||
| LS200+-10 | 10 | 145 | 31.30 | |||||
| LS250+-7 | 7 | 102 | 45.80 | 335 | 250 | DN100 | 3620 | 3502*1754*1983 |
| LS250+-8 | 8 | 116 | 43.30 | |||||
| LS250+-10 | 10 | 145 | 39.00 | |||||
| LS280+-7 | 7 | 102 | 52.40 | 375 | 280 | DN125 | 5925 | 3502*1754*1983 |
| LS280+-8 | 8 | 116 | 50.00 | |||||
| LS280+-10 | 10 | 145 | 43.70 | |||||
FAQ
Q1: Are you a manufacturer or trading company?
A1: Xihu (West Lake) Dis.in is professional screw air compressor factory located in HangZhou, China, CHINAMFG is Xihu (West Lake) Dis.in overseas market sales representative.
Q2: Xihu (West Lake) Dis.in is real member of Atlas-copco group?
A2: Yes, in 2571, Sweden Atlas-copco 100% acquired Xihu (West Lake) Dis.in.
Q3: Xihu (West Lake) Dis.in air-end from Atlas-copco?
A3: Yes, Xihu (West Lake) Dis.in LS/LSV, LOH, LSH and CS series air compressors all use Atlas Copco’s air-end.
Q4: What’s your delivery time?
A4: about 10-20days after you confirm the order, other voltage pls contact with us.
Q5: How long is your air compressor warranty?
A5: One year for the whole machine since leave our factory.
Q6: What’s the payment term?
A6:We accept T/T, LC at sight, Paypal etc.
Also we accept USD, RMB, JPY, EUR, HKD, GBP, CHF, KRW.
Q7: What’s the Min. Order requirement?
A7: 1unit
Q8: What service you can support?
A8: We offer after-sales service, custom service, production view service and one-stop service.
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Type: | Twin-Screw Compressor |
| Samples: |
US$ 7936/Unit
1 Unit(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors employed in the petrochemical industry?
Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:
1. Instrumentation and Control Systems:
Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.
2. Pneumatic Tools and Equipment:
Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.
3. Process Air and Gas Supply:
Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.
4. Cooling and Ventilation:
Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.
5. Nitrogen Generation:
Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.
6. Instrument Air:
Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.
By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.
.webp)
Can air compressors be used for inflating tires and sporting equipment?
Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes:
1. Tire Inflation:
Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires.
2. Sporting Equipment Inflation:
Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation.
3. Air Tools for Inflation:
Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks.
4. Adjustable Pressure:
One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety.
5. Efficiency and Speed:
Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually.
6. Portable Air Compressors:
For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply.
It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.
.webp)
What is the purpose of an air compressor?
An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:
1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.
2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.
3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.
4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.
5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.
6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.
Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.


editor by CX 2023-11-08