Tag Archives: lowes air compressor

China OEM 37kw 50HP 3 Phase 380V Synchronous Two Stage Screw Air Compressor air compressor lowes

Product Description

Product Parameters

Model Motor Power Maximum Working Pressure Free Air Delivery Air Outlet Pipe Diameter Weight Dimensions(L*W*H)
kW hp bar(g) psig m³/min cfm kg mm
BG30APMII 22 30 7 102 4.3 152 G1-1/2″ 650 1500*1000*1350
8 116 4.1  145
10 145 3.5  124
13 189 2.7  95
BG40APMII 30 40 7 102 6.0  212 G1-1/2″ 700 1500*1000*1350
8 116 5.9  208
10 145 4.7  166
13 189 3.9  138
BG50APMII 37 50 7 102 7.1  251 G1-1/2″ 750 1500*1000*1350
8 116 6.9  244
10 145 5.8  205
13 189 5.4  191
BG60APMII 45 60 7 102 10.0  353 G2″ 1250 2100*1300*1650
8 116 9.5  335
10 145 7.8  275
13 189 6.8  240
BG75APMII 55 75 7 102 13.0  459 G2″ 1300 2100*1300*1650
8 116 12.5  441
10 145 9.2  325
13 189 7.5  265
BG100APMII 75 100 7 102 15.5  547 G2″ 1350 2100*1300*1650
8 116 15.2  537
10 145 12.0  424
13 189 10.2  360
BG125APMII 90 125 7 102 19.8  699 DN80 2700 2500*1650*1900
8 116 19.5  689
10 145 15.0  530
13 189 14.0  494
BG150APMII 110 150 7 102 24.0  848 DN80 2800 2500*1650*1900
8 116 23.0  812
10 145 19.2  678
13 189 16.0  565
BG180APMII 132 180 7 102 27.5  971 DN80 3000 2500*1650*1900
8 116 27.0  954
10 145 23.7  837
13 189 19.0  671
BG220APMII 160 220 7 102 33.0  1165 DN80 4300 3000*1900*1950
8 116 32.5  1148
10 145 27.5  971
13 189 22.5  795
BG250APMII 185 250 7 102 39.0  1377 DN80 4400 3000*1900*1950
8 116 36.0  1271
10 145 32.0  1130
13 189 27.5  971
BG270APMII 200 270 7 102 43.5  1536 DN80 5000 3600*2200*2200
8 116 41.0  1448
10 145 35.5  1254
13 189 31.5  1112
BG300APMII 220 300 7 102 51.5  1819 DN100 5500 3600*2200*2200
8 116 46.0  1624
10 145 38.5  1360
13 189 35.5  1254
BG340APMII 250 340 7 102 54.0  1907 DN100 6000 3600*2200*2200
8 116 51.0  1801
10 145 45.0  1589
13 189 38.0  1342
BG380APMII 280 380 7 102 60.0  2119 DN125 6800 4000*2300*2300
8 116 57.0  2013
10 145 50.0  1766
13 189 43.0  1519
BG420APMII 315 420 7 102 65.0  2295 DN125 7000 4000*2300*2300
8 116 62.0  2190
10 145 56.0  1978
13 189 50.5  1783
BG480APMII 355 480 7 102 75.0  2649 DN150 8500 4200*2200*2350
8 116 73.0  2578
10 145 64.0  2260
13 189 55.0  1942
BG540APMII 400 540 7 102 84.0  2966 DN150 9000 4200*2200*2350
8 116 82.0  2896
10 145 72.0  2543
13 189 61.0  2154

Company Profile

Wallboge is a high-tech enterprise and is considered 1 of the leading manufacturers of air compressor products in China. Our goal is to provide exceptional customer service coupled with quality products and energy saving solutions.

Wallboge’ s primary businesses focus in following key areas:

Integrated screw air compressor for laser cutting
Permanent magnet variable frequency screw air compressor
Two-stage compression permanent magnet variable frequency screw air compressor
Low pressure two-stage compression permanent magnet variable frequency screw air compressor
Low pressure permanent magnet variable frequency screw air compressor
Water-lubricated oil-free screw air compressor
Fixed speed screw air compressor
Oil-free screw blower
Screw vacuum pump

At Wallboge, we earn our customers’ trust and satisfaction by manufacturing the superior quality compressed air products for all industries. All of our products are designed for reliable performance, easy maintenance, and maximum energy efficiency. CHINAMFG has been exporting to more than 150 countries across the globe. 

Wallboge continuously innovates product development and management to meet customers’ demand. The powerful enterprise culture and continuous innovation make CHINAMFG improved rapidly. Wallboge’ s vision is to be a world-renowned high-end energy-saving machinery brand, with sustainable development, constantly improving its own value and sharing it with our customers and staff, committed to continuously satisfying the needs of global companies by providing a full range of industrial air compression solutions.

Certifications

Exhibitions

 

After Sales Service

1. 24/7 after sales service in different languages.
2. Online instruction for installation and commissioning.
3. On-site instruction for installation and commissioning provided by well-trained engineers or local authorized service center.
4. CHINAMFG agents and after sales service available.
 

Our Advantages

1. Proven product quality.
2. Factory direct prices.
3. On-time delivery.
4. Prompt technical support in different languages before sales, in sales and after sales.
5. Small orders accepted to check quality first.
6. OEM & ODM service available.

 

FAQ

Q1: Are you a factory or a trading company? 
A1: We are a factory. Please check our Company Profile.

Q2: What is the exact address of your factory? 
A2: No. 588, East Tonggang Road, Shaxi Town, HangZhou City, ZheJiang Province, China

Q3: What is your delivery time?
A3: For standard voltage, the delivery time is 15 working days after you confirm the order. For non-standard voltage, please contact our sales to confirm the delivery time.

Q4: What kind of payment terms do you accept?
A4: We accept T/T, L/C at sight.

Q5: How long is the warranty of your air compressor?
A5: 2 years for the whole air compressor except consumable spare parts.

Q6: How long could your air compressor be used?
A6: Generally, more than 10 years.

Q7: What is your MOQ requirement?
A7: 1 unit.

Q8: Can you offer OEM & ODM service?
A8: Yes, with a professional design team, we can offer OEM & ODM service.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Engineers Available to Overseas Service.
Warranty: 2 Years
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Structure Type: Closed Type
Customization:
Available

|

air compressor

Can air compressors be used for painting and sandblasting?

Yes, air compressors can be used for both painting and sandblasting applications. Here’s a closer look at how air compressors are utilized for painting and sandblasting:

Painting:

Air compressors are commonly used in painting processes, especially in automotive, industrial, and construction applications. Here’s how they are involved:

  • Spray Guns: Air compressors power spray guns used for applying paint coatings. The compressed air atomizes the paint, creating a fine mist that can be evenly sprayed onto surfaces. The pressure and volume of the compressed air impact the spray pattern, coverage, and overall finish quality.
  • Paint Mixers and Agitators: Compressed air is often used to power mixers and agitators that ensure proper blending of paint components. These devices use the compressed air to stir or circulate the paint, preventing settling and maintaining a consistent mixture.
  • Airbrushing: Air compressors are essential for airbrushing techniques, which require precise control over airflow and pressure. Airbrushes are commonly used in artistic applications, such as illustrations, murals, and fine detailing work.

Sandblasting:

Air compressors play a crucial role in sandblasting operations, which involve propelling abrasive materials at high velocity to clean, etch, or prepare surfaces. Here’s how air compressors are used in sandblasting:

  • Blasting Cabinets: Air compressors power blasting cabinets or booths, which are enclosed spaces where the sandblasting process takes place. The compressed air propels the abrasive media, such as sand or grit, through a nozzle or gun, creating a forceful stream that impacts the surface being treated.
  • Abrasive Blasting Pots: Air compressors supply air to abrasive blasting pots or tanks that store and pressurize the abrasive media. The compressed air from the compressor enters the pot, pressurizing it and allowing for a controlled release of the abrasive material during the sandblasting process.
  • Air Dryers and Filters: In sandblasting applications, it is crucial to have clean, dry air to prevent moisture and contaminants from affecting the abrasive blasting process and the quality of the surface being treated. Air compressors may be equipped with air dryers and filters to remove moisture, oil, and impurities from the compressed air.

When using air compressors for painting or sandblasting, it is important to consider factors such as the compressor’s pressure and volume output, the specific requirements of the application, and the type of tools or equipment being used. Consult the manufacturer’s guidelines and recommendations to ensure the air compressor is suitable for the intended painting or sandblasting tasks.

Proper safety measures, such as wearing protective gear and following established protocols, should always be followed when working with air compressors for painting and sandblasting applications.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

How do oil-lubricated and oil-free air compressors differ?

Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:

Oil-Lubricated Air Compressors:

1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.

2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.

3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.

4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.

Oil-Free Air Compressors:

1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.

2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.

3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.

4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.

When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.

China OEM 37kw 50HP 3 Phase 380V Synchronous Two Stage Screw Air Compressor   air compressor lowesChina OEM 37kw 50HP 3 Phase 380V Synchronous Two Stage Screw Air Compressor   air compressor lowes
editor by CX 2023-12-16

China Custom Wholesale 2.5HP 50L Portable Piston Direct Driven Air Compressor lowes air compressor

Product Description

About company:

HangZhou Shangyang Trading Co., Ltd. is a foreign trade technology enterprise focusing on providing air compressor products. The company has obvious advantages in the whole industry in terms of technical strength, business communication ability and quality control.
The company’s products mainly include air compressor, welding machine, cleaning machine, water pump, motor, etc., sold to more than 80 countries and regions around the world; And long-term for Europe, North and South America and other CHINAMFG brands and end sellers to provide high-quality air compressor products; The cooperation with these customers enables the company’s products to meet the technical and quality requirements of the mainstream markets in Europe and America.
 

 

Model No. Motor Power Speed Max Delivery Working Pressure Tank Volume Weight Dimension
HP kW Rpm L/Min Bar Psi Liter Gallon kg LxWxH(mm)
HL1515 1.5 1.1 2850/3400 126/150 8 115 15 3.9 17 56x23x52
HL1524 1.5 1.1 2850/3400 150/178 8 115 24 6.3 21 58x26x62
HL2571 2 1.5 2850/3400 187/224 8 115 24 6.3 22 58x26x62
HL2050 2 1.5 2850/3400 187/224 8 115 50 13 23 75x31x70
HL2550 2.5 1.8 2850/3400 221/163 8 115 50 13 27 75x31x70

Common Problem:

Q1. How can I get a quotation of the electric air compressor?
A. Leave us message with your purchase requirements and we will reply you within 1 hour on working
time. Or you may contact us directly by Trade Manager.
Q2. Can you do the OEM for us?
A. Yes, OEM are welcome.

Q3. How about your company’s quality control?
A. We have a professional QA & QC team and will fully track the orders from the very beginning to the very end, such as checking
the materail, supervising the production, checking the finished product, inspecting the packing, ect.

Q4. Can I get a sample to check the quality?
A. We are glad to offer you samples for test. And there is a discount for Trade Assurance Sample Order.

Q5. What about the lead time for bulk production?
A. It will depend on the order quantity, normally it will be 25 days after the deposit.
 

 Service:

 

After-sales Service: Overseas Third-Party Support Available
Warranty: 0ne Year
Lubrication Style: Lubricated
Cooling System: Air Cooling
Cylinder Arrangement: Duplex Arrangement
Cylinder Position: Vertical
Customization:
Available

|

air compressor

What is the impact of humidity on compressed air quality?

Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:

1. Corrosion:

High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.

2. Contaminant Carryover:

Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.

3. Decreased Efficiency of Pneumatic Systems:

Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.

4. Product Contamination:

In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.

5. Increased Maintenance Requirements:

Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.

6. Adverse Effects on Instrumentation:

Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.

To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.

air compressor

Can air compressors be used for medical and dental applications?

Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:

1. Dental Tools:

Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.

2. Medical Devices:

Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.

3. Laboratory Applications:

Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.

4. Surgical Tools:

In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.

5. Sterilization and Autoclaves:

Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.

6. Dental Air Compressors:

Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.

7. Air Quality Standards:

In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.

8. Compliance and Regulations:

Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.

It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.

air compressor

What is the role of air compressor tanks?

Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:

1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.

2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.

3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.

4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.

5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.

6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.

Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.

China Custom Wholesale 2.5HP 50L Portable Piston Direct Driven Air Compressor   lowes air compressorChina Custom Wholesale 2.5HP 50L Portable Piston Direct Driven Air Compressor   lowes air compressor
editor by CX 2023-12-12

China OEM CHINAMFG 24L 1100W Electric Portable Mini Silent Oil Free Air Compressor air compressor lowes

Product Description

VIDO 1.5hp 7 bar 24L 2800rpm silent oil free air compressor

 

Silent Oil Free Air Compressor      

Power input

600W(0.8HP)

1100W(1.5HP)

1500W(2HP)

Rated voltage

220-240V~50Hz

220-240V~50Hz

220-240V~50Hz

Rated speed

 2800/min

2800/min

2800/min

Tank volume

 8L

24L

50L

Max work pressure

 7bar(100psi)

7bar(100psi)

8bar(116psi)

Air flow

50L/min (3m3/H)

120L/min(7.2m3/H)

240L/min(14.4m3/H)

Air refilling speed

≤ 15s

≤22s

≤ 35s

 

 

Warranty: 1 Year
Lubrication Style: Oil-less
Power Source: AC Power
Type: Piston
Condition: New
Tank Volume: 24L

air compressor

How are air compressors utilized in the aerospace industry?

Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:

1. Aircraft Systems:

Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.

2. Ground Support Equipment:

Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.

3. Component Testing:

Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.

4. Airborne Systems:

In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.

5. Environmental Control Systems:

Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.

6. Engine Testing:

In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.

7. Oxygen Systems:

In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.

It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.

air compressor

Can air compressors be used for medical and dental applications?

Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:

1. Dental Tools:

Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.

2. Medical Devices:

Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.

3. Laboratory Applications:

Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.

4. Surgical Tools:

In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.

5. Sterilization and Autoclaves:

Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.

6. Dental Air Compressors:

Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.

7. Air Quality Standards:

In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.

8. Compliance and Regulations:

Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.

It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.

air compressor

What are the key components of an air compressor system?

An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:

1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.

2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.

3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.

4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.

6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.

7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.

8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.

9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.

10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.

These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.

China OEM CHINAMFG 24L 1100W Electric Portable Mini Silent Oil Free Air Compressor   air compressor lowesChina OEM CHINAMFG 24L 1100W Electric Portable Mini Silent Oil Free Air Compressor   air compressor lowes
editor by CX 2023-11-30

China Custom Scroll Compressor for Air Condition Zp Series Zp103kce-Tfd-250 lowes air compressor

Product Description

Product Description

Scroll  Refrigertion Compressor Zp Series ZP103KCE-TFD-250

Refrigerant: R404/R22

Med Temperature

Large operating envelope

Fast temperature pull down capabilities

Light weight and compactness

Scroll Digital Technology for simple, step-less capacity modulation
 

Product Parameters

 

Model Voltage Phase Displacement Horse  Cooling  Input  COP Current Weight
(m3/hr) Power capacity(w) Power(w) (W/W) (A)
ZP57K3E-PFJ 220~240 1 9.44 4.8HP 13950 4650 3 24 41
ZP57K3E-TFD 380~420 3 9.44 4.8HP 13950 4650 3 8.1 41
ZP61KCE-PFZ 220~240 1 10.11 5HP 14800 4933 3 23.3 40
ZP61KCE-TFD 380~420 3 10.11 5HP 14700 4742 3.1 8.3 40
ZP67KCE-TFD 220~240 1 10.96 5HP 16200 5400 3 25.7 40
ZP67KCE-TFD 380~420 3 10.96 5.6HP 16100 5194 3.1 9.1 40
ZP72KCE-TFD 380~420 3 11.68 6HP 17100 5700 3 9.8 40
ZP83KCE-TFD 380~420 3 13.43 7HP 19900 6419 3.1 11.7 40
VP90KSE-TFP 380 3 14.64 7.5HP 21900 6844 3.2 12.3 57
VP103KSE-TFP 380 3 16.83 9HP 25200 7875 3.2 13.6 60
VP120KSE-TFP 380 3 19.84 10HP 29300 9156 3.2 16.6 61
VP137KSE-TFP 380 3 22.16 11.50HP 32600 10188 3.2 17.8 61
VP144KSE-TFP 380 3 23.42 12HP 35400 10727 3.3 18.7 61
ZP154KCE-TFD 380~420 3 24.87 13HP 37300 11303 3.3 20.7 65
ZP182KCE-TFD 380~420 3 29.08 15HP 44000 13333 3.3 25.7 66
ZP235KCE-TWD 380~420 3 37.97 20HP 57000 17273 3.3 29.9 14
ZP295KCE-TWD 380~420 3 46.71 25HP 71500 21667 3.3 37.2 160
ZP385KCE-TWD 380~420 3 60.79 30HP 92500 28030 3.3 48.1 177
ZP485KCE-TWD 380~420 3 77.33 40HP 117000 35455 3.3 60.3 200

Detailed Photos

Q&A

  Q&A:
  1. What is the packaging and shipping method?
By Sea: Export wooden package,with refrigerant oil .
By Air: Full-sealed wooden package, without refrigerant oil.

2. What is your main compressor series (classification)?
– B(itzer compressors
– Scroll compressors: CR,VR, ZB ,ZR, Z(F,ZP SERIES
– Semi-hermetic compressors: DL,D2,D4,D6,D8 SERIES
– Performer compressors: SM, SZ, SH SERIES
– Commercial compressors: FR, SC SERIES
– Maneurop piston compressors:MT, MTZ, NTZ, MPZ SERIES
– Secop compressor, Carrier(Carlyle) compressor
– Hitachi compressor, CHINAMFG compressor
– Tecumseh compressor, LG compressor, CHINAMFG compressor
– Toshiba compressor, CHINAMFG compressor, Embraci Aspera compressor
– Also B)itzer, Carel, Dixell original valves, controls and selected parts
– TE, TDE, TGE, PHT SERIES TERMOSTATIC EXPANSION VALVES
– ETS SERIES EXPANSION VAVLES, 
– EVR SERIES ECPANSION VAVLES AND
– KP1,KP5,KP15 SERIES PRESSURE CONTROLS
– DCL DML LIQUID LINE FILTER DRIERS

3.What is the term of payment?
T/T, Western Union

4.Which port does you ship from?
HangZhou.

5. How long is the warranty period for this product?
 1 year

After Sales Service

Pre-sales: We provide assistance to our customers, provide valid information according to the requirements of our guests, answer questions, leave a professional impression, and lay the foundation for future sales.

Selling: let our customers know more about our products, and enthusiastically answering questions for customers and providing customers with a pleasant buying experience.

After-sales: After the products are sold, the professionals provide training services, check and maintain the products regularly, if there is problems for the quality,Will solve it for customers in time.

After-sales Service: Online Support
Warranty: 1 Year
Installation Type: Stationary Type
Lubrication Style: Lubricated
Cylinder Position: Vertical
Color: Black
Customization:
Available

|

air compressor

Can air compressors be used for painting and sandblasting?

Yes, air compressors can be used for both painting and sandblasting applications. Here’s a closer look at how air compressors are utilized for painting and sandblasting:

Painting:

Air compressors are commonly used in painting processes, especially in automotive, industrial, and construction applications. Here’s how they are involved:

  • Spray Guns: Air compressors power spray guns used for applying paint coatings. The compressed air atomizes the paint, creating a fine mist that can be evenly sprayed onto surfaces. The pressure and volume of the compressed air impact the spray pattern, coverage, and overall finish quality.
  • Paint Mixers and Agitators: Compressed air is often used to power mixers and agitators that ensure proper blending of paint components. These devices use the compressed air to stir or circulate the paint, preventing settling and maintaining a consistent mixture.
  • Airbrushing: Air compressors are essential for airbrushing techniques, which require precise control over airflow and pressure. Airbrushes are commonly used in artistic applications, such as illustrations, murals, and fine detailing work.

Sandblasting:

Air compressors play a crucial role in sandblasting operations, which involve propelling abrasive materials at high velocity to clean, etch, or prepare surfaces. Here’s how air compressors are used in sandblasting:

  • Blasting Cabinets: Air compressors power blasting cabinets or booths, which are enclosed spaces where the sandblasting process takes place. The compressed air propels the abrasive media, such as sand or grit, through a nozzle or gun, creating a forceful stream that impacts the surface being treated.
  • Abrasive Blasting Pots: Air compressors supply air to abrasive blasting pots or tanks that store and pressurize the abrasive media. The compressed air from the compressor enters the pot, pressurizing it and allowing for a controlled release of the abrasive material during the sandblasting process.
  • Air Dryers and Filters: In sandblasting applications, it is crucial to have clean, dry air to prevent moisture and contaminants from affecting the abrasive blasting process and the quality of the surface being treated. Air compressors may be equipped with air dryers and filters to remove moisture, oil, and impurities from the compressed air.

When using air compressors for painting or sandblasting, it is important to consider factors such as the compressor’s pressure and volume output, the specific requirements of the application, and the type of tools or equipment being used. Consult the manufacturer’s guidelines and recommendations to ensure the air compressor is suitable for the intended painting or sandblasting tasks.

Proper safety measures, such as wearing protective gear and following established protocols, should always be followed when working with air compressors for painting and sandblasting applications.

air compressor

How do you choose the right air compressor for woodworking?

Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:

1. Required Air Volume (CFM):

Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.

2. Tank Size:

Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.

3. Maximum Pressure (PSI):

Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.

4. Noise Level:

Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.

5. Portability:

Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.

6. Power Source:

Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.

7. Quality and Reliability:

Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.

8. Budget:

Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.

By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.

air compressor

Can air compressors be used for automotive applications?

Yes, air compressors can be used for various automotive applications and are commonly found in automotive repair shops, garages, and even in some vehicles. Here are some automotive applications where air compressors are frequently utilized:

1. Tire Inflation: Air compressors are commonly used to inflate tires in automotive applications. They provide a convenient and efficient way to inflate tires to the recommended pressure, ensuring optimal tire performance, fuel efficiency, and safety.

2. Air Tools: Air compressors power a wide range of pneumatic tools used in automotive repair and maintenance. These tools include impact wrenches, ratchet wrenches, air hammers, pneumatic drills, and sanders. Air-powered tools are favored for their high torque and power-to-weight ratio, making them suitable for heavy-duty automotive tasks.

3. Spray Painting: Air compressors are commonly used in automotive painting applications. They power airbrushes and spray guns that are used to apply paint, primer, and clear coats. Air compressors provide the necessary air pressure to atomize the paint and deliver a smooth and even finish.

4. Brake System Maintenance: Air compressors play a crucial role in maintaining and diagnosing automotive brake systems. They are used to pressurize the brake lines, allowing for proper bleeding of the system and detection of leaks or faults.

5. Suspension Systems: Some automotive suspension systems, such as air suspensions, rely on air compressors to maintain the desired air pressure in the suspension components. The compressor inflates or deflates the suspension as needed to provide a comfortable ride and optimal handling.

6. Cleaning and Dusting: Air compressors are used for cleaning automotive parts, blowing away dust and debris, and drying surfaces. They provide a high-pressure stream of air that effectively cleans hard-to-reach areas.

7. Air Conditioning Systems: Air compressors are a key component in automotive air conditioning systems. They compress and circulate refrigerant, allowing the system to cool and dehumidify the air inside the vehicle.

When using air compressors for automotive applications, it’s important to consider the specific requirements of the task at hand. Ensure that the air compressor has the necessary pressure and capacity to meet the demands of the application. Additionally, use appropriate air hoses, fittings, and tools that are compatible with the compressor’s output.

Overall, air compressors are versatile and valuable tools in the automotive industry, providing efficient power sources for a wide range of applications, from tire inflation to powering pneumatic tools and supporting various automotive systems.

China Custom Scroll Compressor for Air Condition Zp Series Zp103kce-Tfd-250   lowes air compressorChina Custom Scroll Compressor for Air Condition Zp Series Zp103kce-Tfd-250   lowes air compressor
editor by CX 2023-11-29

China supplier High Low Pressure CHINAMFG Air Compressor 15kw to 55kw lowes air compressor

Product Description

Air Compressor

  1. Cooling the inner surface of the preform without using the high pressure compressed air , unlike most post-mold cooling systems which only cool the outer surface.
  2. Optimized cycle utilization – being mounted on the moving platen , the cooling system remains active within 85% of the overall cycle-time.
  3. Capacity of PET injection molding system is from 280 to 500 tonnes ( 2800KN to 5000KN ) , and it is available for the preform mould maximum with 96 cavities.
  4. Model Flow(m³/min) Dimension L*W*H(m)
    0.7mpa 0.8mpa 1.0mpa 1.2mpa
    15kw 2.5 2.3 2.1 1.8 1.45×1.35×1.45
    18.5kw 3.1 2.9 2.6 2.2 1.60×1.35×1.45
    22kw 3.7 3.5 3.1 2.9 1.60×1.35×1.75
    30kw 5.3 5.0 4.6 3.9 1.60×1.35×1.75
    37kw 6.7 6.2 5.7 5.0 1.80×1.55×1.85
    45kw 7.2 7.0 6.2 5.7 1.80×1.55×1.85
    55kw 10.0 9.1 8.2 7.4 2.10×1.80×1.85
Contact Us:
 
Andy Wang

HangZhou HOTON MACHINERY CO.,LTD
MP:

Company Profile:
     
    HangZhou Hoton Machinery Co.,LTD was established in 2006, and is the professional machine manufacturer in China. There are 480 workers, of whom 60 are engineers. It has an area of 46,000 square meter, general assets 30,000,000. It has a store of 350 equipments and the good ability of products design & manufacturing. It has export quality permit from 2007, and has export right given by the State Foreign Economic Trade Committee in 2008.  
   The leading products: “Hoton” series of CNC machines, Lathes, Milling machines, Drilling machines,Grinding machines, Saws, Sheet metal machines, Metal forming machines, and other machine accessories.Some products have national patent.It has 14 series, over 80 models by itself. It has the ability of making 100,000 sets every year. All the products are designed perfectly and has high quality high performance and low price, and the excellent quality guarantee system. The products have past ISO9001 and CE certification since 2009. The products have been export to 5 continents, over 40 countries and areas. It resulted to the attraction of client abroad and home, the quickly promotion of products sale.
   HangZhou Hoton Machinery Co.,Ltd. is willing to make common progress and developments with all the customers.

Quality first,Constantly perfecting skills.  

 

Type: Air Compressor
Automatic Grade: Air Compressor
Warranty: 1 Year
After-sales Service: Online
Trademark: HOTONMC
Origin: China
Samples:
US$ 4000/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How are air compressors employed in the petrochemical industry?

Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:

1. Instrumentation and Control Systems:

Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.

2. Pneumatic Tools and Equipment:

Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.

3. Process Air and Gas Supply:

Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.

4. Cooling and Ventilation:

Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.

5. Nitrogen Generation:

Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.

6. Instrument Air:

Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.

By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.

air compressor

How are air compressors employed in the mining industry?

Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:

1. Exploration and Drilling:

Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.

2. Ventilation and Air Quality Control:

Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.

3. Material Conveyance:

In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.

4. Dust Suppression:

Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.

5. Instrumentation and Control:

Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.

6. Explosive Applications:

In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.

7. Maintenance and Repair:

Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.

It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.

By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.

air compressor

Can air compressors be used for automotive applications?

Yes, air compressors can be used for various automotive applications and are commonly found in automotive repair shops, garages, and even in some vehicles. Here are some automotive applications where air compressors are frequently utilized:

1. Tire Inflation: Air compressors are commonly used to inflate tires in automotive applications. They provide a convenient and efficient way to inflate tires to the recommended pressure, ensuring optimal tire performance, fuel efficiency, and safety.

2. Air Tools: Air compressors power a wide range of pneumatic tools used in automotive repair and maintenance. These tools include impact wrenches, ratchet wrenches, air hammers, pneumatic drills, and sanders. Air-powered tools are favored for their high torque and power-to-weight ratio, making them suitable for heavy-duty automotive tasks.

3. Spray Painting: Air compressors are commonly used in automotive painting applications. They power airbrushes and spray guns that are used to apply paint, primer, and clear coats. Air compressors provide the necessary air pressure to atomize the paint and deliver a smooth and even finish.

4. Brake System Maintenance: Air compressors play a crucial role in maintaining and diagnosing automotive brake systems. They are used to pressurize the brake lines, allowing for proper bleeding of the system and detection of leaks or faults.

5. Suspension Systems: Some automotive suspension systems, such as air suspensions, rely on air compressors to maintain the desired air pressure in the suspension components. The compressor inflates or deflates the suspension as needed to provide a comfortable ride and optimal handling.

6. Cleaning and Dusting: Air compressors are used for cleaning automotive parts, blowing away dust and debris, and drying surfaces. They provide a high-pressure stream of air that effectively cleans hard-to-reach areas.

7. Air Conditioning Systems: Air compressors are a key component in automotive air conditioning systems. They compress and circulate refrigerant, allowing the system to cool and dehumidify the air inside the vehicle.

When using air compressors for automotive applications, it’s important to consider the specific requirements of the task at hand. Ensure that the air compressor has the necessary pressure and capacity to meet the demands of the application. Additionally, use appropriate air hoses, fittings, and tools that are compatible with the compressor’s output.

Overall, air compressors are versatile and valuable tools in the automotive industry, providing efficient power sources for a wide range of applications, from tire inflation to powering pneumatic tools and supporting various automotive systems.

China supplier High Low Pressure CHINAMFG Air Compressor 15kw to 55kw   lowes air compressorChina supplier High Low Pressure CHINAMFG Air Compressor 15kw to 55kw   lowes air compressor
editor by CX 2023-11-28

China Standard Three Cylinder 7bar 4kw Portable Belt Driven Electric Stationary Air Compressor Hw5507 for Sale lowes air compressor

Product Description

 

Product Description

Product Parameters

Specification

motor power

Air Displacement

Pressure

Rotate Speed

cylinder diameter

Air tank volume

Size

Weight

Model

HP

KW

m3/min

Mpa

r/min

(mm)

L

L*W*H(mm)

Kg

HW4007B

4

3

0.4

0.7

860

3*70

120

1340*470*980

200

HW5507

5.5

4

0.5

0.7

1050

3*70

170

1471*470*980

215

HV7507

7.5

5.5

0.7

0.7

830

2*100

250

1670*500*1090

285

HW10007

10

7.5

1.05

0.7

820

3*100

320

1690*530*1260

335

HW15007

15

11

1.5

8300.7

950

2*125,1*110

320

1740*590*1350

487

HW20007

20

15

2.1

0.7

830

2*125,1*110

500

1840*640*1350

582

Detailed Photos

 

 

 

 

Company Profile

Packaging & Shipping

Certifications

 

FAQ

Q1: Are you factory or trade company?
A1: We are factory. And we have ourselves trading company.

Q2: Warranty terms of your machine?
A2: One year warranty for the machine and technical support according to your needs.

Q3: Will you provide some spare parts of the machines?
A3: Yes, of course.

Q4: What about the voltage of products??Can they be customized?
A4: Yes, of course. The voltage can be customized according to your equirement.

Q5: How long will you take to arrange production?
A5: 380V 50HZ we can delivery the goods within 7-15 days. Other electricity or other color we will delivery within 20-30 days.

Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome.

Q7 Which trade term can you accept?
A7: Available trade terms: FOB, CIF, CFR, EXW, CPT, etc.

After-sales Service: 24 Hours Online Service
Warranty: 1 Year
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: DC Power
Cylinder Position: Horizontal

air compressor

What is the impact of humidity on compressed air quality?

Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:

1. Corrosion:

High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.

2. Contaminant Carryover:

Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.

3. Decreased Efficiency of Pneumatic Systems:

Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.

4. Product Contamination:

In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.

5. Increased Maintenance Requirements:

Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.

6. Adverse Effects on Instrumentation:

Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.

To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

What is the impact of tank size on air compressor performance?

The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:

1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.

2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.

3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.

4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.

5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.

It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.

Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.

China Standard Three Cylinder 7bar 4kw Portable Belt Driven Electric Stationary Air Compressor Hw5507 for Sale   lowes air compressorChina Standard Three Cylinder 7bar 4kw Portable Belt Driven Electric Stationary Air Compressor Hw5507 for Sale   lowes air compressor
editor by CX 2023-11-27

China OEM Oil Free Screw Air Compressor for Medical air compressor lowes

Product Description

Huakang is committed to providing customers with advanced vacuum systems to improve production efficiency, reduce operating costs, and extend equipment lifespan, thereby enabling you to stay ahead of competitors. Each micro oil/oil-free screw vacuum pump adopts our innovative design, with industry-leading host performance, achieving excellent energy efficiency, excellent reliability, and first-class pumping speed. In addition, with unique advantages, we also provide you with comprehensive solutions such as professional engineering design and construction, comprehensive after-sales support, and durable Huakang original spare parts

Huakang medical integrated negative pressure vacuum Adopting Germany cutting-edge rotary vane vacuum technology, with gas ripple design and  circulating oil lubrication design , VX series vacuum pump achieves a perfect balance in strong suction, smooth operation, and extremely low noise; that makes this series of products are classic and remarkable . Based on the practical application environment in China, we continuously develop and research on it;  and achieved extremely good reliability and stability of the product, VX series vacuum pumps can operate safely and reliably in extremely worse environments, and the simple installation and maintenance, makes you to choose and use the products with more confidence.
 

Advantage

1,Automatic electrical control system with high degree of intelligence;
2,Compacted Medical Use Body Vacuum Suction Machine with Good Quality
3,Open data communication interface, facilitating remote management of equipment.
4,Dynamic display of technological process, enabling operating data storage, fault protection and abnormal warning;
5,Dynamic control of water cooling temperature and water level, ensuring the operation of vacuum pump in the optimal condition;
6,Automatic switching between units, and automatic supplement with the subsequent unit in accordance with the decline in gas consumption.

Technical Parameter
Model Max Pressure Rated Power Air flow Interface Size Size(LxWxH) Weight Noise Level
barg kW m³/min BSPT mm kg dB(A)
VT2-8 8 2.2   0.24 1/2″ 730×660×850 204 58
VT2-10 10 2.2   0.21 1/2″ 204 58
VT2-13 13 2.2   0.16 1/2″ 204 58
VT4-8 8 3.7   0.41 1/2″ 730×660×850 231 58
VT4-10 10 3.7   0.36 1/2″ 231 58
VT4-13 13 3.7   0.32 1/2″ 231 58
VT6-8 8 5.5   0.61 34″ 730×660×850 256 59
VT6-10 10 5.5   0.53 34″ 256 59
VT6-13 13 5.5   0.46 34″ 256 59
VT8-8 8 77    0.82 R1 1000×640×1090 438 62
VT8-10 10 7.7   0.72 R1 438 62
VT8-13 13 7.7   0.64 R1 438 62
VT11-8 8 11   1.22 R1 1000×640×1090 495 64
VT11-10 10 11   1.06 R1 495 64
VT11-13 13 11   0.92 R1 495 64
VT17-8 8 16.5   1.83 R1 1000x 730×2000 515  
VT17-10 10 16.5   1.59 R1 515 61
VT17-13 13 16.5   1.38 R1 515 61
VT22-8 8 22   2.44 R1.5 1000x730x2000 720 61
VT22-10 10 22   2.12 R1.5 720  
VT22-13 13 22   1.84 R1.5 720 61
VT33-8 8 33   3.66 R1.5 1200x1400x1580 1000 63
VT33-10 10 33   3.18 R1.5 1000 63
VT33-13 13 33   2.76 R1.5 1000 63
VT44-8 8 44   4.88 R2 1200x 1400×2040 1380 65
VT44-10 10 44   4.24 R2 1380 65
VT44-13 13 44   3.68 R2 1380 65
 
Standard configuration Option
Air inlet filter element Built in refrigerated dryer
Programmable controller Adsorption dryer (only for integrated models)
Automatic start/stop Pre filtration kit
RS485 interface Built in 30L air storage tank+lossless electronic drain valve
Current Monitoring 270L gas storage tank
Phase-sequence protection 500L gas storage tank
With motor overload protection Gas storage tank equipped with lossless electronic drain valve (only for models with gas storage tank)
High temperature shutdown Water separator is only available for on-site ground mounted models)
Air-cooled aftercooler Upgrade to touch screen controller
Running time timing WOODEN CASE
Safety valve test certificate

  

 

Company Profile

Huakang USES the German advanced technology manufacturing,

is a leading supplier of vacuum industry technology, is located in

Xihu (West Lake) Dis.ng District, ZheJiang City, China, vacuum pump, vacuum the

central system and accessories research and development,

production, sales, maintenance, provide different industries

vacuum application system solutions and the central vacuum

system design and installation. Huakang has a vacuum industry

senior engineer and advanced technology, leading equipment,

reliable products and quality service has won the praise of

domestic and foreign customers. It is the industry’s preferred

vacuum supplier.

Huakang vacuum pump use industry including printing, packaging, electronics, semiconductor industry, pharmaceutical industry, vacuum coating, LED, photovoltaic, solar, wind, lithium batteries, distillation, petrochemical industry, CNC carving, PCB pressing, medical, textile, vacuum suction plastic and other industrial areas, is always to customized, efficient, stable, safe and reliable vacuum solutions, vacuum pump products and services to the customers.At present, Huakang brand vacuum pump products sales network throughout the world, and set up dealer service network in Europe, America, Australia, the Middle East region, products exported to more than 50 countries. 

FAQ

Q1: are you a manufacturing company or a trading company?

A: we are specialized in the production of vacuum pumps, and we are also the agent for trading vacuum pumps and parts of various major brands.

 

Q2: how long is your delivery time?

A: we have enough stock in stock. We will ship the goods on time after receiving the payment order.

 

Q3: how to solve the fault in use?

A: we have A professional technical team. If you have any problems during the installation and use, we will provide free technical services.

 

Q4: are your products genuine?

A: all of our vacuum pump equipment is genuine, and some of the maintenance parts are high quality replacement products.

 

Q5: what payment options do you support?

A: we support L/C, D/A, D/P, T/T, Paypal, Western Union, MoneyGram, and more.

 

Q6: how do you deliver?

A: we usually use UPS, DHL, TNT, FEDEX, EMS, CHINA POST and other air express. Some heavy cargo equipment is selected by special line or sea transportation.

Our Services:

1. Delivery time is 5~7 days for sample and 15 working days for bulk order;

 

2. Strong production capacity and strict quality control system;

 

3. Your inquiry and problems related to our products or prices will be replied in 24 hours;

 

4. Well-trained and experienced staffs to answer all your inquires;

 

5. After-sale tracking service for all of our clients;

6. OEM is available; small quantities, mixed bulk orders are also welcome;

 

7.Within the warranty period, we will bear all the qulity problem of our produts;

 

8.Beyond the warranty period, we will despatch the replacement parts to help fix the products;

 

9.Without any problem, we will gain the feedbacks of our products to help improve better products.

After-sales Service: 7*24hours
Warranty: 2 Years
Oil or Not: Oil Free
Structure: Rotary Vacuum Pump
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: High Vacuum
Customization:
Available

|

air compressor

What are the differences between stationary and portable air compressors?

Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:

1. Mobility:

The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.

2. Power Source:

Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.

3. Tank Capacity:

Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.

4. Performance and Output:

The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.

5. Noise Level:

Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.

6. Price and Cost:

Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.

When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.

air compressor

How does the horsepower of an air compressor affect its capabilities?

The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:

Power Output:

The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.

Air Pressure:

The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.

Air Volume:

In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.

Duty Cycle:

The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.

Size and Portability:

It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.

When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.

Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.

air compressor

How does an air compressor work?

An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:

1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.

2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.

3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.

4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.

5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.

6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.

Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.

In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.

China OEM Oil Free Screw Air Compressor for Medical   air compressor lowesChina OEM Oil Free Screw Air Compressor for Medical   air compressor lowes
editor by CX 2023-11-21

China Good quality Fast Delivery Gold Mining Belt Driven Piston Air Compressor for Jack Hammer air compressor lowes

Product Description

Product Description

Advantages of piston type air compressor: high effiency, long service life .
We also sell piston air compressor spare parts 

 

Product Parameters

model motor power cylinder qty*mm rotation speed r/min FAD m3/min working pressure dimension L*W*H mm weight KGS
w-1.8/5 S1100*11KW 3*Φ100 1200 1.8 0.5(5) 1500*600*950 300
w-2.8/5 S1100*15KW  3*Φ115 1120 2.6 0.5(5) 1670*820*1150 450
w-3.0/5 S1115*18.5KW  3*Φ120 1070 3 0.5(5) 1880*870*1230 460
w-3.2/7 S1125.18.5KW 3*Φ125 800 3.7 0.7(7) 1910*800*1620 530
w-3.5/5 S1125.18.5KW 3*Φ125 1170 3.5 0.5(5) 1880*870*1240 460
sf4.0/5 S1130*22KW  4*Φ120 1070 4 0.5(5) 1960*860*1300 655
2v-3.5/5 S1125*18.5KW 4*Φ115 980 3.5 0.5(5) 1800*950*1300 650
2v-4.0/5 S1130*22KW 4*Φ120 980 4.0  0.5(5) 1800*950*1300 750

Packaging & Shipping

 

  1. You can choose any mode of transportation you like, including sea transportation, air transportation or land transportation.
  2. To better ensure the safety of your goods, professional, environmentally friendly, convenient and efficient packaging services will be provided
  3. For any special requirement about packing, please tell us, we will do our best to meet.

Customer feedback

Certifications

We will work harder to provide our users with better quality ,superior performance and more versatile practival goods.
 

Contact us

After-sales Service: Online Service for 2 Years
Warranty: 1 Years
Cooling System: Water Cooling
Samples:
US$ 495/Piece
1 Piece(Min.Order)

|

Order Sample

Same as the picture
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What are the advantages of using rotary vane compressors?

Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:

1. Compact and Lightweight:

Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.

2. High Efficiency:

Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.

3. Quiet Operation:

Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.

4. Oil Lubrication:

Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.

5. Versatile Applications:

Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.

6. Easy Maintenance:

Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.

These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.

air compressor

How does the horsepower of an air compressor affect its capabilities?

The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:

Power Output:

The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.

Air Pressure:

The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.

Air Volume:

In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.

Duty Cycle:

The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.

Size and Portability:

It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.

When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.

Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.

air compressor

How is air pressure measured in air compressors?

Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:

1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.

2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.

To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.

It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.

When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.

Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.

China Good quality Fast Delivery Gold Mining Belt Driven Piston Air Compressor for Jack Hammer   air compressor lowesChina Good quality Fast Delivery Gold Mining Belt Driven Piston Air Compressor for Jack Hammer   air compressor lowes
editor by CX 2023-11-02

China best VW-4.4/ (36.8-44.7) – (39.9-49.9) Regenerative Gas Compressor Oil Free Air Compressor air compressor lowes

Product Description

HangZhou United Compressor Manufacturing Co., Ltd. was established in 2002 and is a high-tech enterprise in ZheJiang Province. The company has complete production equipment testing methods, and relies on its technological advantages to introduce, absorb, and digest new technologies and processes from abroad. The products have covered all domestic demand industries and regions, and are exported to multiple countries such as Russia, Tajikistan, India, Pakistan, North Korea, etc. It is a qualified supplier and partner for many domestic and foreign enterprises.
    The company has a sales and service team that continuously provides customers with various energy-saving and modern compressor system products. In the past 10 years, the company has maintained rapid and stable development, providing products and services for industries such as natural gas, steel, petroleum, chemical, coal, mining, and metallurgy. We not only have mature products, but also have a capable after-sales service team, such as conducting pre-sales inspections of compressors, timely tracking during sales, and 24-hour after-sales repair and maintenance services.

Product Application
Mainly used for pressurized transmission of natural gas into the pipeline network (Natural pipeline gas extraction and combustible gas recovery tank filling)
It can also be used for stirring in the pharmaceutical and brewing industries, pressurized gas transportation in the chemical industry, blow molding bottle making in the food industry, and dust removal of parts in the machine manufacturing industry.
Product Features
1. This series of compressors is an advanced piston compressor unit produced and manufactured using the product technology of Mannes Mandermarg Company in Germany.
2. The product has the characteristics of low noise, low vibration, compact structure, smooth operation, safety and reliability, and high automation level. It can also be configured with a data-driven remote display and control system according to customer requirements.
3. Equipped with alarm and shutdown functions for low oil pressure, low water pressure, high temperature, low inlet pressure, and high exhaust pressure of the compressor, making the operation of the compressor more reliable.
Structure Introduction
The unit consists of a compressor host, electric motor, coupling, flywheel, pipeline system, cooling system, electrical equipment, and auxiliary equipment.

Reference Technical parameters and specifications

NO. MODEL Compressed medium Flow rate
Nm³/h
Inlet pressure
MPa
Outlet pressure
MPa
Rotating speed
r/min
Motor power
KW
Cooling mode Overall dimension
mm
Weight
Kg
1 DW-14/(0-0.2)-25 Raw gas 800 0-0.02 2.5 740 160 Water cooled 4800*3200*1915 ~10000
2 VW-8/18 Vinylidene fluoride gas 418 Atmospheric pressure 1.8 980 75 Water cooled 3700*2000*1700 ~4500
3 VWD-3.2/(0-0.2)-40 Biogas 230 0-0.2 4.0 740 45 Water cooled 6000*2500*2650 ~8000
4 VW-9/6 Ethyl chloride gas 470 Atmospheric pressure 0.6 980 55 Water cooled 2800*1720*1700 ~3500
5 DWF-12.4/(9-12)-14 Carbon dioxide 6400 0.9-1.2 1.4 740 185 Air cooled 6000*2700*2200 ~10000
6 VWF-2.86/5-16 Nitrogen gas 895 0.5 1.6 740 55 Air cooled 3200*2200*1750 ~3500
7 DW-2.4/(18-25)-50 Raw gas 2900 1.8-2.5 5.0 980 160 Water cooled 4300*3000*1540 ~4500
8 VW-5.6/(0-6)-6 Isobutylene gas 1650 0-0.6 0.6 740 45 Water cooled 2900X1900X1600 ~3500
9 VW-3.8/3.5 Mixed gas 200 Atmospheric pressure 0.35 980 18.5 Water cooled 2200*1945*1600 ~2000
10 ZW-1.7/3.5 Vinyl chloride gas  100 Atmospheric pressure 0.35 740 15 Water cooled 2700X1600X2068 ~2000
11 ZWF-0.96/5 Hydrogen chloride gas 55 Atmospheric pressure 0.5 740 11 Air cooled 2000*1500*2000 ~1000
12 VW-0.85/(0-14)-40  Refrigerant gas 300 0-1.4 4.0 740 55 Water cooled 4500*2300*1780 ~5500
13 DW-3.78/(8-13)-(16-24) Ammonia gas 2700 0.8-1.3 1.6-2.4 740 75 Water cooled 3200*2000*1700 ~3500

Related products

 

Warranty: 12months
Lubrication Style: Lubricated
Cooling System: Air Cooling
Cylinder Arrangement: Customized
Cylinder Position: Customized
Structure Type: Open Type
Customization:
Available

|

air compressor

What are the advantages of using an air compressor in construction?

Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:

  • Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
  • Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
  • Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
  • Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
  • Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
  • Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
  • Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.

It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.

In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China best VW-4.4/ (36.8-44.7) - (39.9-49.9) Regenerative Gas Compressor Oil Free Air Compressor   air compressor lowesChina best VW-4.4/ (36.8-44.7) - (39.9-49.9) Regenerative Gas Compressor Oil Free Air Compressor   air compressor lowes
editor by CX 2023-10-30

China best CHINAMFG Heat Pump Compressor CHINAMFG R22 Compressor Lh53ybac for Air Conditioiner lowes air compressor

Product Description

Mitsubishi (MGC) Rotary Compressor Description

Mitsubishi air conditioning compressors reduce costs across the entire product lifespan in the application.
They support system design for high efficiency performance and for the use of alternative refrigerants for light commercial, commercial and industrial CHINAMFG applications such as rooftops units, chillers, process cooling, packaged units etc.

 

Key Features

Environmental protection

Energy efficiency leader,boosting the upgrade of the green household appliances

Efficient

18-slot motor with a 6-pole winding, creating the ultimate ultra-quiet technology in the industry

Tropics

Energy efficiency leader,boosting the upgrade of the green household appliances

Frequency conversion

Effective solution to the low energy efficiency problem of the inverter compressor at low frequency

Varactor

Lower minimum capacity of the compressor and better use comfort of the air conditioner.technology in the industry

Mitsubishi Main Catergories :
*Double-cylinder Variable Frequency Compressor
*T3/R407C Compressor,T3/R410A Compressor,T3/R22 Constant Speed Compressor
*R410A Constant Speed Compressor
*R22 Constant Speed Compressor
*R22 Efficient Environment-friendly Compressor
*Refrigerant Enhanced Compressor
*Vapor Injection Compressor
*Variable Frequency and Capacitance Compressor
*Single-cylinder Variable Frequency Compressor
*Universal Coupling Compressor
*Special Purpose Compressor

Series Model Rotary Displ. Capacity Power COP Range 
singie/twin cm³/rev W Btu/h W W/W HZ
K KNB065FUJHC Single Rotary 6.5 2040 6960 635 3.21 25-115
KNB073FUVHC Single Rotary 7.3 2250 7680 695 3.24 25-115
KNB073FKVMC Single Rotary 7.3 2250 7677 700 3.21 25-105
KNB073FFDMC Single Rotary 7.3 2250 7677 695 3.24 25-115
KNB092FHBMC Single Rotary 9.2 2960 15710 895 3.31 15-115
KNB092FFYMC Single Rotary 9.2 2920 9963 880 3.31 15-120
KNB092FTAMC Single Rotary 9.2 2920 9963 860 3.4 15-115
KNB092FLQMC Single Rotary 9.2 2920 9963 905 3.23 15-115
KNB092FADMC Single Rotary 9.2 2920 9963 870 3.35 15-115
KNB102FBHMC Single Rotary 10.2 3275 11175 950 3.45 15-115
KNB102FADMC Single Rotary 10.2 3270 11157 975 3.35 15-115
KNB102FFUMC Single Rotary 10.2 3275 11174 950 3.45 15-115
S SNB110FGAMC Twin Rotary 11 3400 11601 1000 3.4 10-130
SNB130FGYMC Twin Rotary 13 4100 13989 1245 3.29 10-130
SNB130FGAMC Twin Rotary 13 4100 13989 1200 3.42 10-130
SNB130FYQMC Twin Rotary 13 4090 13955 1215 3.37 10-120
SNB140FUYMC Twin Rotary 14 4410 15047 1335 3.3 10-120
SNB140FCAMC Twin Rotary 14 4400 18130 1300 3.37 10-120
SNB140FVQMC Twin Rotary 14 4380 14945 1305 3.37 10-120
SNB150FGAMC Twin Rotary 15 4620 15763 1420 3.25 10-120
SNB172FJFMC Twin Rotary 17.2 5400 18425 1580 3.42 10-130
SNB172FJGMC Twin Rotary 17.2 5460 18630 1640 3.33 10-130
SNB220FBGMC Twin Rotary 22 7000 23884 2100 3.33 10-120
T TNB220FLHMC Twin Rotary 22 7130 24328 2200 3.24 10-110
TNB220FFEMC Twin Rotary 22 7130 24328 2150 3.32 10-110
TNB306FFEMC Twin Rotary 30.6 9880 33711 2940 3.36 10-120
TNB306FPGMC Twin Rotary 30.6 9880 33711 3571 3.28 10-120
TNB306FPNMC(3phase) Twin Rotary 30.6 9880 33711 3571 3.28 10-120

 

Xihu (West Lake) Dis.r Technologies is a global supplier and marketer of CHINAMFG maintenance and compressor solutions for commercial and residential air conditioning,heating,ventilation and refrigeration field, manufacturing and other industrial applications.
Incorporated in 2571,our innovative products have been used by facilities and plant maintenance personnel CHINAMFG for the maintenance of CHINAMFG systems,and producion of AC and refrigerating equipment.Our products include CHINAMFG maintenance machines,refigeration equipment and compressors.

Core Markets Served:
Commercial/Residential/Maritime/Utility HVAC
Air Conditioning,Refrigerator,Coldroom,Heat Pump Manufacturing
Refrigeration Parts Wholesale and Retail

Certification:

Packing and Delivery

FAQ

1. How long have you been in this field and where is your company?
We have been in this field for years and we are located in HangZhou, the Canton Fair host city, and the capital city of ZheJiang Province, near to HangZhou, Hong Kong, very convenient for trading and shipping.

2. What are your main catagories?
– Hermetic Compressor (scroll, rotary, reciprocating)
– Semi hermetic compressor (screw)
– CHINAMFG maintenance supplies
– Refrigeration equipment and parts

3.Can you offer us quality product at the best price?
Of course, Quality is our culture; we always take good care of our clients interest if both are sincere to establish good relationship. 

4.What is the term of payment?
T/T, L/C,Western Union; Trade Assurance online.

5.How about the MOQ?
1 unit acceptable. 

6. Cooperative Partners?
Gree, Landa, Media, GMCC, LG, Panasonic,Copeland, Maneurop, Performer, , Daikin, Hitachi,Highly, Mitsubishi, Secop, Embraco,Chigo, Haier, Sanyo, Wanbao, Sanhua,etc…

Contact Us

HangZhou Xihu (West Lake) Dis.r Technologies Co.,Ltd.

After-sales Service: Video Technical Support, Online Support
Warranty: 1 Year
Refrigerant: R410A
Displacement: 36 Cm3/Rev
Capacity: 10098BTU/H
Power Input: 945W

air compressor

How does variable speed drive technology improve air compressor efficiency?

Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:

1. Matching Air Demand:

Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.

2. Reduced Unloaded Running Time:

Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.

3. Soft Starting:

Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.

4. Energy Savings at Partial Load:

In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.

5. Elimination of On/Off Cycling:

Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.

6. Enhanced System Control:

VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.

By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.

air compressor

What safety precautions should be taken when working with compressed air?

Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:

1. Personal Protective Equipment (PPE):

Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.

2. Compressed Air Storage:

Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.

3. Pressure Regulation:

Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.

4. Air Hose Inspection:

Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.

5. Air Blowguns:

Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.

6. Air Tool Safety:

Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.

7. Air Compressor Maintenance:

Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.

8. Training and Education:

Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.

9. Lockout/Tagout:

When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.

10. Proper Ventilation:

Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.

By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.

air compressor

How do oil-lubricated and oil-free air compressors differ?

Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:

Oil-Lubricated Air Compressors:

1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.

2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.

3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.

4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.

Oil-Free Air Compressors:

1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.

2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.

3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.

4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.

When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.

China best CHINAMFG Heat Pump Compressor CHINAMFG R22 Compressor Lh53ybac for Air Conditioiner   lowes air compressorChina best CHINAMFG Heat Pump Compressor CHINAMFG R22 Compressor Lh53ybac for Air Conditioiner   lowes air compressor
editor by CX 2023-10-27