Product Description
Compressor
Product Description
High quality product providers
The compressors applied in the air conditioning industry in diverse applications including split systems, rooftops, packaged units and chillers, scroll compressors are now the most used compression technology replacing reciprocating and screw compressors due to its undeniable superiority.
Several, fully CHINAMFG qualified, multiple compressor assemblies (tandem and trio) are available to be used in large capacity systems to deliver optimal comfort, low operating cost with higher seasonal efficiency.
1. High efficiency
2. Good reliability
3. Low noise, low vibration
4. Original and new
5. Refrigerant: R407
Features and Benefits
• CHINAMFG Scroll axial and radial compliance for superior reliability and efficiency
• Wide scroll line-up
• Low oil circulation rate
• Superior liquid handling capability
• Low sound and vibration level
• Low Total Equivalent Warming Impact
• CHINAMFG qualified tandem and trio configurations for superior seasonal efficiency
Application diagram
| Model NO. | Cooling Capacity (rating point 7.2) | nominal hp | Displ. cc/rev | nom current FLa | Weight (Kg) |
| ZR22K3PFJ522 | 5240 | 1.83 | 30.7 | 9.6 | 26 |
| ZR28K3PFJ522 | 6970 | 2.33 | 39.2 | 12.9 | 27.3 |
| ZR28K3EPFJ522 | 6970 | 2.33 | 39.2 | 12.9 | 27.3 |
| ZR34K3PFJ522 | 8260 | 2.83 | 46.1 | 13.6 | 29.5 |
| ZR34K3EPFJ522 | 8260 | 2.83 | 46.1 | 13.6 | 29.5 |
| ZR36K3PFJ522 | 8850 | 3 | 49.5 | 16.4 | 29.5 |
| ZR40K3PFJ522 | 9620 | 3.33 | 54.19 | 17.1 | 32 |
| ZR42K3PFJ522 | 10140 | 3.5 | 56.8 | 17.1 | 30 |
| ZR47K3PFJ522 | 11500 | 3.9 | 64.1 | 19.3 | 32.6 |
| ZR68KCPFJ522 | 16800 | 5.75 | 93 | 28.2 | 43.5 |
| ZR28K3TFD522 | 6970 | 2.33 | 39.2 | 5 | 26 |
| ZR28K3ETFD522 | 6970 | 2.33 | 39.2 | 5 | 26 |
| ZR36K3TFD522 | 8850 | 3 | 49.5 | 5.7 | 29.5 |
| ZR40K3TFD522 | 9260 | 3.33 | 51.2 | 6.4 | 32 |
| ZR47KCTFD522 | 11400 | 3.9 | 63.2 | 7.2 | 32.6 |
| ZR47KCETFD522 | 11400 | 3.9 | 63.2 | 7.2 | 32.6 |
| ZR48KCTFD522 | 11500 | 4.1 | 67.2 | 7.5 | 38 |
| ZR48KCETFD522 | 11500 | 4.1 | 67.2 | 7.5 | 38 |
| ZR54KCTFD522 | 13000 | 4.5 | 73.2 | 8.2 | 35.5 |
| ZR57KCTFD522 | 13660 | 4.75 | 76.9 | 8.2 | 36 |
| ZR57KCETFD522 | 13660 | 4.75 | 76 | 8.2 | 36 |
| ZR61KCTFD522 | 14700 | 5 | 82.4 | 10 | 35.9 |
Due to too many models not clearly listed, you can consult us separately for specifications
Production and Manufacturing
Professional and experienced compressor manufacturers, only to provide better compressors.
After strict inspection and screening.
Application
Company Profile
ZHangZhoug Damai Refrigeration Technology Co., Ltd is located in Shaoxin,ZHangZhoug.Damai is a company specializing in refrigeration and air conditioning equipment.Our main equipment is Cold room,Evaporator,Condenser,Condensing unit,Compressor,Cold room panel/door,Flake ice machine,Block ice machine and so on.We have more than 10 years of experience in the field of cold storage, with high-quality technology and professional product knowledge.We are able to provide consumers with professional and high-quality technical services.The quality of our products can be guaranteed.
Why choose our company ?
1.Because our company has CAC official .
2.We have a good one-year after-sales service.
3.We have over 20 years of sales experience.
4.We have our own factory.
5.We will try our best to provide a professional response as soon as possible.
Product advantages
1.Quite operation.
2.Seamless connection.
3.Easy installation
4.Beautiful and elegant placement of circuit devices.
5.Using the best equipment.
6.Not easily damaged.
FAQ
1: How long is the delivery time?
It takes within 1 month from receipt of the deposit to preparation of the goods.
2: How long is the quality guarantee period?
The warranty period is 1 year, and the after-sales service is available 24 hours.
3: What is your price?
Our FOB price is based on quantity, material and size you required.The more machines you order, the lower price we will give! Also CIF CNF price is the same.
4: What can you do for us?
All material/ size are available, also we can customize products as your requirements. Any questions, pls don’t hesitate to contact us.
After Sales Service
Pre-sales:
We provide assistance to our customers, provide valid information according to the requirements of our guests, answer questions, leave a professional impression, and lay the foundation for future sales.
Selling:
let our customers know more about our products, and enthusiastically answering questions for customers and providing customers with a pleasant buying experience.
After-sales:
After the products are sold, the professionals provide training services, check and maintain the products regularly, if there is problems for the quality,Will solve it for customers in time.
If you are interested in our products, please contact us as soon as possible.
| After-sales Service: | 1year |
|---|---|
| Warranty: | 1year |
| Lubrication Style: | Lubricated |
| Samples: |
US$ 450/Piece
1 Piece(Min.Order) | Order Sample |
|---|
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What are the differences between stationary and portable air compressors?
Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:
1. Mobility:
The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.
2. Power Source:
Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.
3. Tank Capacity:
Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.
4. Performance and Output:
The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.
5. Noise Level:
Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.
6. Price and Cost:
Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.
When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.
.webp)
How are air compressors used in refrigeration and HVAC systems?
Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:
1. Refrigerant Compression:
In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.
2. Refrigeration Cycle:
The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.
3. HVAC Cooling and Heating:
In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.
4. Air Conditioning:
Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.
5. Compressor Types:
Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.
6. Energy Efficiency:
Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.
By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.
.webp)
Can you explain the basics of air compressor terminology?
Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:
1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.
2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.
3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.
4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.
6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.
7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.
8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.
9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.
These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.


editor by CX 2023-12-06
China Standard Ybf6h-35.2g Semi-Hermetic Piston Refrigeration Air Compressor for AC for Cold Room Condensing Unit with Best Sales
Product Description
Product Description
ABOUT US
HangZhou Ouyu is an importing and exporting branch of ZHangZhoug Briliant Refrigeration Equipment Co., Ltd., a professional Refrigeration Equipment Co., Ltd.,It integrates compressor design, development, production and sales Located in ZHangZhoug province,founded in 2013.Now we have more than 100 employees, covers a total area of 17,000 square meters.
Small volume ,light weight,small vibration,low noise,high effciency and energy saving,environmental protection,security and stability.
| Compressor Model | Nominal Motor Power (HP/KW) | Displacement (50Hz)m³/h | Number of Cylinder x Diameter x Stroke mm | Oil injection volume (L) | Powersupply V/Φ/Hz | Electricalparameter | Crankcase Heater (220V) W | Oilsupply method | Weight (including freezingoil) Kg | |
| Max.operating current A | Starting current/rotor locked current. Operating current A | |||||||||
| YBF2FC-2.2Z | 2/1.5 | 9.54 | 2×φ46×33 | 1 | △/Y Directly start the motor 220~240△ 380~420Y /3~/50 265~290△ 400~480Y /3~/60 |
8.5/4.9 | 39/22.5 | 60 | Centrifgal lubrcation | 45 |
| YBF2FC-3.2G | 3/2.2 | 9.54 | 2×φ46×33 | 1 | 10.0/5.8 | 44.2/25.5 | 60 | 47 | ||
| YBF2DC-2.2Z | 2/1.5 | 13.42 | 2×φ50×39.3 | 1.5 | 11.9/6.9 | 53.7/30.7 | 100 | 68 | ||
| YBF2DC-3.2G | 3/2.2 | 13.42 | 2×φ50×39.3 | 1.5 | 13.5/7.8 | 64/37 | 100 | 71 | ||
| YBF2CC-3.2Z | 3/2.2 | 16.24 | 2×φ55×39.3 | 1.5 | 14.8/8.5 | 64/37 | 100 | 70 | ||
| YBF2CC-4.2G | 4/3.0 | 16.24 | 2×φ55×39.3 | 1.5 | 16.4/9.4 | 76.6/44.2 | 100 | 70 | ||
| YBF4FC-3.2Z | 3/2.2 | 18.05 | 4×φ41×39.3 | 2 | 15.9/9.2 | 76.6/44.2 | 100 | 81 | ||
| YBF4FC-5.2G | 5/3.7 | 18.05 | 4×φ41×39.3 | 2 | 18.7/10.8 | 107.7/62.2 | 100 | 85 | ||
| YBF4EC-4.2Z | 4/3.0 | 22.72 | 4×φ46×39.3 | 2 | 18.5/10.7 | 92.7/53.3 | 100 | 82 | ||
| YBF4EC-6.2G | 6/4.4 | 22.72 | 4×φ46×39.3 | 2 | 22.9/13.2 | 107.7/62.2 | 100 | 85 | ||
| YBF4DC-5.2Z | 5/3.7 | 26.84 | 4×φ50×39.3 | 2 | 23.4/13.5 | 107.7/62.2 | 100 | 85 | ||
| YBF4DC-7.2G | 7/5.1 | 26.84 | 4×φ50×39.3 | 2 | 27.5/15.9 | 142.8/82.4 | 100 | 88 | ||
| YBF4CC-6.2Z | 6/4.4 | 32.48 | 4×φ55×39.3 | 2 | 27.5/15.9 | 142.8/82.4 | 100 | 89 | ||
| YBF4CC-9.2G | 9/6.6 | 32.48 | 4×φ55×39.3 | 2 | 34.5/20.0 | 142.8/82.4 | 100 | 89 | ||
| YBF4VCS-6.2Z | 6/4.4 | 34.73 | 4×φ55×39.3 | 2.6 | PW Split winding starting motor 380~420YY /3/50 400~480YY /3/60 |
14 | 39/68 | 120 | 117 | |
| YBF4VCS-10.2G | 10/7.5 | 34.73 | 4×φ55×42 | 2.6 | 21 | 59/99 | 120 | 127 | ||
| YBF4TCS-8.2Z | 8/5.5 | 41.33 | 4×φ60×42 | 2.6 | 17 | 49/81 | 120 | 122 | ||
| YBF4TCS-12.2G | 12/8.8 | 41.33 | 4×φ60×42 | 2.6 | 24 | 69/113 | 120 | 129 | ||
| YBF4PCS-10.2Z | 10/7.5 | 48.05 | 4×φ65×42 | 2.6 | 21 | 59/99 | 120 | 127 | ||
| YBF4PCS-15.2G | 15/10.5 | 48.05 | 4×φ65×42 | 2.6 | 31 | 81/132 | 120 | 135 | ||
| YBF4NCS-12.2Z | 12/8.8 | 56.25 | 4×φ70×42 | 2.6 | 24 | 69/113 | 120 | 129 | ||
| YBF4NCS-20.2G | 20/15 | 56.25 | 4×φ70×42 | 2.6 | 37 | 97/158 | 120 | 138 | ||
| YBF4H-15.2Z | 15/10.5 | 73.6 | 4×φ70×55 | 4.5 | 31 | 81/132 | 120 | Forced-lubrication | 183 | |
| YBF4H-25.2G | 25/18.5 | 73.6 | 4×φ70×55 | 4.5 | 45 | 116/193 | 120 | 194 | ||
| YBF4G-20.2Z | 20/15 | 84.5 | 4×φ75×55 | 4.5 | 37 | 97/158 | 120 | 192 | ||
| YBF4G-30.2G | 30/22 | 84.5 | 4×φ75×55 | 4.5 | 53 | 135/220 | 120 | 206 | ||
| YBF6H-25.2Z | 25/18.5 | 110.5 | 6×φ70×55 | 4.75 | 45 | 116/193 | 120 | 224 | ||
| YBF6H-35.2G | 35/25.5 | 110.5 | 6×φ70×55 | 4.75 | 61 | 147/262 | 120 | 235 | ||
| YBF6G-30.2Z | 30/22 | 126.8 | 6×φ75×55 | 4.75 | 53 | 135/220 | 120 | 228 | ||
| YBF6G-40.2G | 40/30 | 126.8 | 6×φ75×55 | 4.75 | 78 | 180/323 | 120 | 238 | ||
| YBF6F-40.2Z | 40/30 | 151.6 | 6×φ82×55 | 4.75 | 78 | 180/323 | 120 | 238 | ||
| YBF6F-50.2G | 50/37 | 151.6 | 6×φ82×55 | 4.75 | 92 | 226/404 | 120 | 241 | ||
Company Profile
| After-sales Service: | 1 Years |
|---|---|
| Warranty: | 1 Years |
| Cooling System: | Air Cooling |
| Cylinder Arrangement: | Balanced Opposed Arrangement |
| Cylinder Position: | Angular |
| Structure Type: | Semi-Closed Type |
| Samples: |
US$ 490/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in the aerospace industry?
Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:
1. Aircraft Systems:
Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.
2. Ground Support Equipment:
Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.
3. Component Testing:
Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.
4. Airborne Systems:
In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.
5. Environmental Control Systems:
Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.
6. Engine Testing:
In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.
7. Oxygen Systems:
In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.
It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.
.webp)
How are air compressors employed in the mining industry?
Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:
1. Exploration and Drilling:
Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.
2. Ventilation and Air Quality Control:
Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.
3. Material Conveyance:
In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.
4. Dust Suppression:
Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.
5. Instrumentation and Control:
Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.
6. Explosive Applications:
In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.
7. Maintenance and Repair:
Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.
It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.
By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.
.webp)
How does an air compressor work?
An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:
1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.
2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.
3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.
4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.
5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.
6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.
Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.
In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.


editor by CX 2023-11-02