Tag Archives: chiller compressor

China factory 220-240V 50Hz Refrigeration Rotary Compressor for Air Curtain Cabinet and Commercial Chiller Display Unit 1-3HP CHINAMFG Qhd-16K air compressor parts

Product Description

Product Description

Detailed Photos

 

Company Profile

 

Our Advantages

 

 

FAQ

 

DC COMPRESSOR
Q: What’s the application of DC compressor?
A: DC12V/24V compressor is widely used in air conditioning of truck cabin, construction machinery cabin; DC72Vcompressor is widely used in air conditioning of electric car, DC 48V compressor is widely used in solar air conditioner, telecommunication shelter.
Q: How does your dc compressor work?
A: This is hermetic rotary BRUSHLESS dc compressor which must be drived by dc power through controller. Electricity to be saved in battery group as energy bank; Batteries drive air conditioner to run for cooling and heating.
Q: Does your compressor can replace traditional car compressor?
A: Yes, this dc 12v compressor can replace belt car compressor. But needed some change and the compressormust be mounted reasonable and properly, and we strongly suggest for separated 12 battery power.
Q: Which kind of fan motor you use?
A: we use 24v/48V DC brushless fan motors for both indoor and outdoor units of our solar air conditioners. DC brushless fan motors can greatly reduce energy consumption, and run with super low noise.
Q: Do you need inverter to make DC power to AC?
A: Inverter is NOT required for our solar air conditioners, because our solar air condtioners were 100% driven by24V DC power.
Q: What will happen when a battery is not enough power?
A: When the voltage of battery is lower than the limit,the AC system will be shut off automatically. After the batteryreach recover voltage, the AC system will re-start automatically.
Q: What will happen when a battery is not enough power?
A: When the voltage of battery is lower than the limit,the AC system will be shut off automatically. After the batteryreach recover voltage, the AC system will re-start automatically.
Q: Are you manufacturer?
A: Yes, we are professional manufacturer of rotary compressor in China for more than 12 years.
Q: Do you have the warranty?
A: We have 1 year warranty for manufacturers.
Q: Which customers do you cooperated with?
A: We have cooperated with many domestic and international manufacturers, like PREAIR,KINGTEC,HAIER,SANYO and DAYRELAX and so on.
Q: What are your payment terms?
A: T/T and UC are both OK

HQHD FAQ
Q: Why choose Horizontal condensing unit?
A: Horizontal condensing unit is more compact, providing more effective volume in the showcase.
Q: What’s type of compressor of the condensing unit? What’s the advantage compared to reciprocating compressors?
A: The compressor is rotary compressor. In the rotary type, noise and vibration is largely reduced compared with the reciprocating compressor. Therefore noise generated by the unit can be reduced. Horizontal design makes the condensing unit more compact
Q: Can we use this condensing unit frozen room -22°ºC?
A: Yes. The evaporating temperature of condensing unit is from -5 degree to -40 degrees. t can use in frozen room also cold storage room.
Q: Are you manufacturer?
A: Yes. We are professional manufacturer of rotary compressor and condensing units for more than 12 years.
Q: Do you have the warranty?
A: we have 1 year warranty for manufacturers.
Q: Which customers do you cooperated with?
A: We have cooperated with many domestic and international manufacturers, like PREAR, KINGTEC, HAIER,SANYO, and DAYRELAX and so on.
Q: What are your payment terms?
A: T/T and LC are both OK

QGD FAQ
Q: Why choose Horizontal compressor?
A: Horizontal compressor has low height, let the condensing unit more compact, providing more effective volume in the showcase.
Q: What’s the advantage compared to reciprocating compressors?
A: The compressor is rotary compressor. In the rotary type, noise and vibration is largely
reduced compared
with the reciprocating compressor. Therefore noise generated by the unit can be reduced. The effciency of rotary compressor is 20% higher than reciprocating compressors.
Q: Can we use this compressor frozen room -22’ºC?
A: Yes. The evaporating temperature of compressor is from -5 degree to -40 degrees. It can use in medium temperature also low temperature.
Q: Are you manufacturer?
A: Yes. We are professional manufacturer of rotary compressor and condensing units for more than 12 years.
Q: Do you have the warranty?
A: we have 1 year warranty for manufacturers.
Q: Which customers do you cooperated with?
A: We have cooperated with many domestic and international manufacturers, like PREAIR, KINGTEC,HAIER,SANYO, and DAYRELAX and so on.
Q: What are your payment terms?
A: T/T and LC are both OK.
  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 1 Year
Installation Type: Movable Type
Lubrication Style: Oil-less
Cylinder Position: Horizontal
Structure Type: Closed Type
Samples:
US$ 143/Piece
1 Piece(Min.Order)

|
Request Sample

air compressor

What are the advantages of using rotary vane compressors?

Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:

1. Compact and Lightweight:

Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.

2. High Efficiency:

Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.

3. Quiet Operation:

Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.

4. Oil Lubrication:

Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.

5. Versatile Applications:

Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.

6. Easy Maintenance:

Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.

These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

What are the different types of air compressors?

There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:

1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.

2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.

3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.

4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.

5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.

6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.

These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.

China factory 220-240V 50Hz Refrigeration Rotary Compressor for Air Curtain Cabinet and Commercial Chiller Display Unit 1-3HP CHINAMFG Qhd-16K   air compressor partsChina factory 220-240V 50Hz Refrigeration Rotary Compressor for Air Curtain Cabinet and Commercial Chiller Display Unit 1-3HP CHINAMFG Qhd-16K   air compressor parts
editor by CX 2023-12-25

China factory 260kw Hot Sale Biogas Modular Chiller Air Cooled Industrial Water Chiller Scroll Compressor arb air compressor

Product Description

260kW Hot Sale Biogas Modular Chiller Air Cooled Industrial Water Chiller Scroll Compressor

Cooling Capacity 1 ~ 260kW /  0.3 ~ 75Ton / 0.5 ~ 104Ph

Our Product Range

Product Pictures

Product Description

FEATURES
The master module can work independently or together with up to 16 slave modules.

Units with V type heat exchanger: panels, frame and base are made from galvanized steel protected with polyester powder painting to ensure total resistance to atmospheric agents.

3-phase scroll type compressor, with built-in thermal overload cut-out and crankcase heater, mounted on rubber vibration dampers.

External rotor type axial fans, equipped with three phase direct drive motors, low noise 8 poles, protection level IP54, provided with a protective outlet grille.

Evaporator built with high efficiency Shell and tube type heat exchanger, factory insulated with flexible close cell material. 

Condenser built with seamless copper tubes mechanically expanded into blue hydrophilic aluminum fins.

Refrigerant circuit complete with charge valves, filter drier, sight glass, gas-liquid separator, thermostatic expansion valve, high & low pressure switch. The heat pump unit is completed also with 4-way valve, liquid receiver and 1 way valve.

Hydraulic circuit built with galvanized pipe, complete with water discharge connection for tube in tube heat exchanger and flange type hydraulic connectors in 2 directions easy for connections from both sides of the units.

Electric panel consist of: compressor contactor, fan motor contactor, compressor protection breaker, fan protection breaker, phase sequence relay and microprocessor with function display (display only for master/packaged unit)

Automatic operation dramatically reducing maintenance cost thanks to reliable microprocessor system. 

OPTIONAL 

Paddle flow switch;
Metallic filter for hydraulic circuit;
Water pump;
Rubber antivibration mounting.
Heat recovery functions

Main Spare Parts

TECHNICAL DATA

Model  AW   60 100 130 200 260
Cooling capacity* kW 65 97.5 130 195 260
Cooling power input kW 20.8 31.4 42.1 63.6 84.2
Heating capacity** kW 68 102 136 204 272
Heating power input kW 20.2 30.6 41 61.2 82
Max Input Power kW 24 35.7 47.7 71.4 95.4
Max Input current A 50 74 97 148 194
Cooling Running Current A 46 68 89 136 178
Start-Up Current A 167 187 206 374 412
Compressor
Power supply / 380/3/50
Brand/Type / Daikin/Scroll
Refrigerant / R410a
Qty/refrigerant circuit Nr. 2 3 4 6 8
Cooling power input* kW 2*9.4 3*9.63 4*9.77 6*9.63 8*9.77
Heating power input** kW 2*9.1 3*9.36 4*9.5 6*9.36 8*9.5
Energy adjustment % 0- 
Axial fan
Quantity Nr. 2 2 2 4 4
Power input kW 2 2.5 3 5 6
Airflow m3/h 24000 36000 48000 72000 96000
Evaporator
Type / Shell and tube heat exchanger
  Water flow when cooling m3/h 11.2 16.8 22.4 33.6 44.8
  Water flow when heating m3/h 11.7 17.6 23.4 35.1 46.8
  Water side pressure drop *** kPa 46 52 55 52 55
 Water connection size DN 50 50
 
65 2×50 2×65
Noise level***   dB(A) 70 72 72 74 75
Dimensions  
V type coil Length mm 2000 2207 2207 2207 2207
Width mm 1060 1300 1300 2207 2207
Height mm 1957 2076 2076 2096 2096
Net weight   kg 620 1060 1120 2160 2280
Working weight   kg 635 1090 1155 2220 2350

*Ambient temperature 35ºC; evaporator water out -5 ºC;
*** In the nominal water flow condition the pressure drop is between this range.
**** Sound pressure measured at a distance of 1 m and a height of 1.5 m above the ground in a dear field.

Production Process

Overseas Simple Projects

Our Factory and Certificates

 

Type: Air-Cooled
Cooling Method: Air-cooled
Unit Structure: Integral
Selected Voltage: 50Hz/60Hz
Compressor Number: 2-4
Noise Level: Low
Customization:
Available

|

air compressor

How does variable speed drive technology improve air compressor efficiency?

Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:

1. Matching Air Demand:

Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.

2. Reduced Unloaded Running Time:

Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.

3. Soft Starting:

Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.

4. Energy Savings at Partial Load:

In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.

5. Elimination of On/Off Cycling:

Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.

6. Enhanced System Control:

VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.

By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.

air compressor

What is the energy efficiency of modern air compressors?

The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:

Variable Speed Drive (VSD) Technology:

Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.

Air Leakage Reduction:

Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.

Efficient Motor Design:

The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.

Optimized Control Systems:

Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.

Air Storage and Distribution:

Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.

Energy Management and Monitoring:

Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.

It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.

Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.

air compressor

What is the purpose of an air compressor?

An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:

1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.

2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.

3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.

4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.

5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.

6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.

Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.

China factory 260kw Hot Sale Biogas Modular Chiller Air Cooled Industrial Water Chiller Scroll Compressor   arb air compressorChina factory 260kw Hot Sale Biogas Modular Chiller Air Cooled Industrial Water Chiller Scroll Compressor   arb air compressor
editor by CX 2023-11-20